Jump to content

Electronics diverge in engineering Ford's hybrid C-Max and plug-in Energi


darrelld
 Share

Recommended Posts

http://www.sae.org/mags/sve/vehic/11705

 

Large cell compartment for plug-in holds electronic modules, which are (1) battery temperature sensor; (2) junction box; (3) battery energy controller; (4) DC-DC converter controller; (5) secondary on-board diagnostic module.

Turning a hybrid electric vehicle (HEV) into a plug-in hybrid (PHEV) is more than adding cells to a battery pack, reflashing the controller, and installing a charger. The 2013 Ford C-Max and C-Max Energi are examples of what it takes to develop conventional hybrid and plug-in versions of the same vehicle—that is, many specific parts, software, and validation.

 

Both cars have lithium-ion (nickel-manganese-cobalt oxide) cells, which are chemically very similar. But those in the plug-in C-Max Energi, which has a 21-mi (34-km) EV range, have thicker electrodes and store more energy.

 

Why wouldn’t the C-Max conventional HEV have the same electrode thickness? Because thinner electrodes have less impedance, so the cells (of which there also are fewer) can deliver electric power faster. HEV batteries are a power source for acceleration assist, only minimal EV operation.

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
 Share

×
×
  • Create New...